Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 591: 216858, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621460

RESUMO

Radiotherapy (RT) remodels the tumor immune microenvironment (TIME) and modulates the immune response to indirectly destroy tumor cells, in addition to directly killing tumor cells. RT combined with immunotherapy may significantly enhance the efficacy of RT in colorectal cancer by modulating the microenvironment. However, the molecular mechanisms by which RT acts as an immunomodulator to modulate the immune microenvironment remain unclear. Further, the optimal modalities of RT combined with immunotherapy for the treatment of colorectal cancer, such as the time point of combining RT and immunization, the fractionation pattern and dosage of radiotherapy, and other methods to improve the efficacy, are also being explored parallelly. To address these aspects, in this review, we summarized the mechanisms by which RT modulates TIME and concluded the progress of RT combined with immunization in preclinical and clinical trials. Finally, we discussed heavy ion radiation therapy and the efficacy of prediction markers and other immune combination therapies. Overall, combining RT with immunotherapy to enhance antitumor effects will have a significant clinical implication and will help to facilitate individualized treatment modalities.

2.
Org Lett ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606985

RESUMO

The asymmetric desymmetrizing [3+2] annulation reaction of p-quinamines and arylalkylketenes to synthesize hydroindoles was realized. Catalyzed by chiral bisguanidinium hemisalt via multiple hydrogen bond interactions, enantiomerically enriched products with reversal of diastereoselectivity in comparison with the racemic version were afforded in good yields under mild reaction conditions. Diaryl-substituted hydroindoles could also perform the Friedel-Crafts type of addition to give more complicated multicycles. Density functional theory calculations revealed that the enantio- and diastereoselectivity stem from varied hydrogen-bonding manners.

3.
BMC Cancer ; 24(1): 57, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200410

RESUMO

BACKGROUND: Anus preservation has been a challenge in the treatment of patients with low rectal adenocarcinoma (within 5 cm from the anal verge) because it is difficult to spare the anus with its functioning sphincter complex under the safe margin of tumour resection. Patients with dMMR/MSI-H can achieve a favourable complete response (CR) rate by using a single immune checkpoint inhibitor. For patients with pMMR/MSS/MSI-L, intensified neoadjuvant three-drug chemotherapy may be the preferred option for anal preservation. In addition, the watch and wait (W&W) strategy has been proven safe and feasible for patients with rectal cancer who achieve a clinical complete response (cCR). Therefore, we initiated this clinical trial to explore the optimal neoadjuvant treatment pattern for patients with low locally advanced rectal cancer (LARC) with different MMR/MSI statuses, aiming to achieve a higher cCR rate with the W&W strategy and ultimately provide more patients with a chance of anus preservation. METHODS: This is a randomised, controlled, open-label, multicentre phase III trial. Patients with clinical stage T2-4 and/or N + tumours located within 5 cm from the anal verge are considered eligible. Based on the results of pathological biopsy, the patients are divided into two groups: dMMR/MSI-H and pMMR/MSS. Patients in the dMMR/MSI-H group will be randomly allocated in a 1:1 ratio to either arm A (monoimmunotherapy) or arm B (short-course radiotherapy followed by monoimmunotherapy). Patients in the pMMR/MSS group will be initially treated with long-term pelvic radiation with concurrent capecitabine combined with irinotecan. Two weeks after the completion of chemoradiotherapy (CRT), the patients will be randomly allocated in a 1:1 ratio to arm C (XELIRI six cycle regime) or arm D (FOLFIRINOX nine cycle regime). The irinotecan dose will be adjusted according to the UGT1A1-genotype. After treatment, a comprehensive assessment will be performed to determine whether a cCR has been achieved. If achieved, the W&W strategy will be adopted; otherwise, total mesorectal excision (TME) will be performed. The primary endpoint is cCR with the maintenance of 12 months at least, determined using digital rectal examination, endoscopy, and rectal MRI or PET/CT as a supplementary method. DISCUSSION: APRAM will explore the best anus preservation model for low LARC, combining the strategies of consolidation chemotherapy, immunotherapy, and short-course radiotherapy, and aims to preserve the anus of more patients using W&W. Our study provides an accurate individual treatment mode based on the MMR/MSI status for patients with low LARC, and more patients will receive the opportunity for anus preservation under our therapeutic strategy, which would transform into long-term benefits. TRIAL REGISTRATION: Clinicaltrials.gov NCT05669092 (Registered 28th Nov 2022).


Assuntos
Adenocarcinoma , Neoplasias Encefálicas , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Neoplasias Pancreáticas , Neoplasias Retais , Humanos , Canal Anal , Protocolos de Quimioterapia Combinada Antineoplásica , Irinotecano , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como Assunto
4.
J Ethnopharmacol ; 321: 117510, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030023

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In China, Capparis spinosa L. fruits (CSF) are often used topically in Uyghur folk medicine in treating rheumatic diseases with remarkable efficacy. However, it has noticed severe skin irritation after a short time application with high dose of CSF, which limited long-term clinical use. To date, there is almost no research related to skin irritation of CSF. AIM OF THE STUDY: This study was intended to perform the first systematic assessment of morphological and histological changes in skin after stimulation with CSF. Furthermore, potential irritant components in CSF and related mechanisms were explored by in vitro transdermal techniques, network pharmacology, molecular docking, and experimental validation. MATERIALS AND METHODS: Skin changes after single and multiple stimulations with CSF were observed and subjected to skin irritation response scoring, irritation strength assessment, and histopathological analysis. In addition, in vitro transdermal technology, liquid chromatography-mass spectrometry (LC-MS) method, network pharmacology, molecular docking, and experimental validation were used to further exploit underlying skin irritant components and possible mechanisms of action. RESULTS: CSF induced significant morphological (erythema and edema) and histological (epidermal thickening and inflammatory infiltration) changes in skin of mice, which were similar to the clinical presentation of irritation contact dermatitis (ICD). The ethyl acetate fraction of CSF (CFEAF) was the main source of CSF-induced skin irritation. Kaempferol, flazin, and gallic acid were potential major irritant compounds. Moreover, CFEAF, kaempferol, flazin, and gallic acid could increase the levels of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and interleukin-17A (IL-17A) to promote skin inflammation. The potential mechanism of CSF-induced skin irritation may be activation of the nuclear factor kappa-B (NF-κB) signaling pathway, including phosphorylation of NF-κB p65 (p65) and nuclear factor-kappa B inhibitor alpha (IκBα). CONCLUSION: Kaempferol, flazin, and gallic acid are potential skin irritant components from CSF. Altogether, they induce skin irritation responses through promoting the release of the inflammatory factors TNF-α and ICAM-1, as well as activating the NF-κB signaling pathway. In addition, IL-17A may be an important pro-inflammatory factor in skin irritation.


Assuntos
Capparis , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Molécula 1 de Adesão Intercelular , Interleucina-17 , Quempferóis/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia , Irritantes/toxicidade , Frutas/metabolismo , Simulação de Acoplamento Molecular , Inflamação/tratamento farmacológico , Ácido Gálico/uso terapêutico
5.
Am J Physiol Cell Physiol ; 326(1): C60-C73, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009194

RESUMO

Radiotherapy has long been a main treatment option for nasopharyngeal carcinoma (NPC). However, during clinical treatment, NPC is prone to developing radioresistance, resulting in treatment failure. This study aims to examine the role of histone methylation in the induction of radioresistance. It was found that the radioresistance of NPC cells was related to the increase of the level of histone H3 lysine 27 trimethylation (H3K27me3). Treatment of cells with histone methyltransferase inhibitor GSK126 increased the radiosensitivity of NPC cells by triggering Bcl2 apoptosis regulator/BCL2-associated X, apoptosis regulator (Bcl2/BAX) signaling pathway. Bioinformatics analysis indicated that the expression of 2'-5'-oligoadenylate synthetase 1 (OAS1) was reduced in the radioresistant cells but increased in the GSK126-treated cells. Chromatin immunoprecipitation assay confirmed that the decrease of OAS1 expression in radioresistant cells was mainly due to the enrichment of H3K27me3 in its promoter region. Furthermore, downregulation of OAS1 reduced apoptosis due to the inhibition of Bcl2/BAX pathway after irradiation, while OAS1 overexpression increased radiosensitivity. Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, the histone methyltransferase inhibitor GSK126 could overcome the radioresistance and thus might be a potential therapeutic strategy for NPC.NEW & NOTEWORTHY Our findings revealed for the first time that the increase of H3K27me3 level was associated with the decrease of OAS1 expression, leading to the inhibition of apoptosis and ultimately contributing to the radioresistance of NPC cells. Moreover, we demonstrated that the histone methyltransferase inhibitor GSK126 could be a promising therapeutic strategy for NPC by overcoming radioresistance, providing valuable insights into the clinical treatment of NPC.


Assuntos
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Histonas/genética , Histonas/metabolismo , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Histona Metiltransferases/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , 2',5'-Oligoadenilato Sintetase/metabolismo
6.
Mater Today Bio ; 23: 100809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37779919

RESUMO

Our previous clinical trial (Identifier: NCT02605265) revealed that addition of irinotecan (IRIN) to neoadjuvant chemoradiotherapy for rectal cancer could improve the curative effect. However, the adverse effects caused by IRIN limited the wide application of IRIN chemoradiotherapy. This study aimed to explore the mechanism under the synergistic effects of IRIN plus radiation therapy in colorectal cancer (CRC) cells and optimization of IRIN delivery via a silicasome nanocarrier in vivo. Our results revealed that compared with single IRIN or radiation treatment, IRIN combined with radiation therapy remarkably activated the intracellular cGAS/STING pathway, and promoted the expression levels of major histocompatibility complex class I (MHC-I) and programmed death ligand 1 (PD-L1). Further, a silicasome (mesoporous silica nanoparticle coated with lipid bilayer) nanocarrier was utilized to improve the delivery of IRIN with enhanced efficacy and reduced side effects. In the MC38 CRC syngeneic tumor model, IRIN silicasome combined with radiation therapy demonstrated a greater antitumor efficacy than free IRIN plus radiation therapy. Flow cytometry showed the increased number of CD4+ T cells, CD8+ T cells, and dendritic cells (DCs) in tumor in the IRIN silicasome plus radiation group. The immunofluorescence staining further confirmed the activated immune microenvironment with the elevated interferon-γ (IFN-γ) deposition. Besides, the antitumor effect of IRIN silicasome plus radiation therapy was synergistically enhanced by anti-PD-1 immunotherapy. These findings indicated that the combination of IRIN silicasome with radiation therapy could sensitize immunotherapy by manipulating the cGAS/STING pathway serving as a new strategy for CRC treatment.

7.
Int J Biol Sci ; 19(11): 3526-3543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496994

RESUMO

Cuproptosis, a new type of programmed cell death (PCD), is closely related to cellular tricarboxylic acid cycle and cellular respiration, while hypoxia can modulate PCD. However, their combined contribution to tumor subtyping remains unexplored. Here, we applied a multi-omics approach to classify TCGA_COADREAD based on cuproptosis and hypoxia. The classification was validated in three colorectal cancer (CRC) cohorts and extended to a pan-cancer analysis. The results demonstrated that pan-cancers, including CRC, could be divided into three distinct subgroups (cuproptosis-hypoxia subtypes, CHSs): CHS1 had active metabolism and poor immune infiltration but low fibrosis; CHS3 had contrasting characteristics with CHS1; CHS2 was intermediate. CHS1 may respond well to cuproptosis inducers, and CHS3 may benefit from a combination of immunotherapy and anti-fibrosis/anti-hypoxia therapies. In CRC, the CHSs also showed a significant difference in prognosis and sensitivity to classic drugs. Organoid-based drug sensitivity assays validated the results of transcriptomics. Cell-based assays indicated that masitinib and simvastatin had specific effects on CHS1 and CHS3, respectively. A user-friendly website based on the classifier was developed (https://fan-app.shinyapps.io/chs_classifier/) for accessibility. Overall, the classifier based on cuproptosis and hypoxia was applicable to most pan-cancers and could aid in personalized cancer therapy.


Assuntos
Neoplasias Colorretais , Multiômica , Humanos , Imunoterapia , Apoptose , Perfilação da Expressão Gênica , Hipóxia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
8.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769373

RESUMO

Radioresistance remains a serious obstacle encountered in the radiotherapy of nasopharyngeal carcinoma (NPC). Both mRNAs and non-coding RNAs (ncRNAs), including long ncRNA (lncRNA) and microRNA (miRNA), play essential roles in radiosensitivity. However, the comprehensive expression profiles and competing endogenous RNA (ceRNA) regulatory networks among lncRNAs, miRNAs, and mRNAs in NPC radioresistance are still bewildering. In this study, we performed an RNA-sequencing (RNA-seq) assay in the radioresistant NPC cells CNE2R and its parental cells CNE2 to identify the differentially expressed lncRNAs, miRNAs, and mRNAs. The ceRNA networks containing lncRNAs, miRNAs, and mRNAs were predicted on the basis of the Pearson correlation coefficients and authoritative miRanda databases. In accordance with bioinformatic analysis of the data of the tandem mass tag (TMT) assay of CNE2R and CNE2 cells and the gene chip assay of radioresistant NPC samples in pre- and post-radiotherapy, the radioresistance-related signaling network of lncRNA CASC19, miR-340-3p, and FKBP5 was screened and further verified using an RT-qPCR assay. CASC19 was positively associated with FKBP5 expression while negatively correlated with miR-340-3p, and the target binding sites of CASC19/miR-340-3p and miR-340-3p/FKBP5 were confirmed using a dual-luciferase reporter assay. Moreover, using an mRFP-GFP-LC3 maker, it was found that autophagy contributed to the radioresistance of NPC. MiR-340-3p inhibition or FKBP5 overexpression could rescue the suppression of autophagy and radioresistance induced by CASC19 knockdown in CNE2R cells. In conclusion, the CASC19/miR-340-3p/FKBP5 network may be instrumental in regulating NPC radioresistance by enhancing autophagy, which provides potential new therapeutic targets for NPC.


Assuntos
Carcinoma , MicroRNAs , Neoplasias Nasofaríngeas , RNA Longo não Codificante , Humanos , Carcinoma/genética , Carcinoma/radioterapia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
9.
Autophagy ; 19(3): 839-857, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35913916

RESUMO

Glioblastoma multiforme (GBM) is the most common brain malignancy insensitive to radiotherapy (RT). Although macroautophagy/autophagy was reported to be a fundamental factor prolonging the survival of tumors under radiotherapeutic stress, the autophagic biomarkers coordinated to radioresistance of GBM are still lacking in clinical practice. Here we established radioresistant GBM cells and identified their protein profiles using tandem mass tag (TMT) quantitative proteomic analysis. It was found that SDC1 and TGM2 proteins were overexpressed in radioresistant GBM cells and tissues and they contributed to the poor prognosis of RT. Knocking down SDC1 and TGM2 inhibited the fusion of autophagosomes with lysosomes and thus enhanced the radiosensitivity of GBM cells. After irradiation, TGM2 bound with SDC1 and transported it from the cell membrane to lysosomes, and then bound to LC3 through its two LC3-interacting regions (LIRs), coordinating the encounter between autophagosomes and lysosomes, which should be a prerequisite for lysosomal EPG5 to recognize LC3 and subsequently stabilize the STX17-SNAP29-VAMP8 QabcR SNARE complex assembly. Moreover, when combined with RT, cystamine dihydrochloride (a TGM2 inhibitor) extended the lifespan of GBM-bearing mice. Overall, our findings demonstrated the EPG5 tethering mode with SDC1 and TGM2 during the fusion of autophagosomes with lysosomes, providing new insights into the molecular mechanism and therapeutic target underlying radioresistant GBM.Abbreviations: BafA1: bafilomycin A1; CQ: chloroquine; Cys-D: cystamine dihydrochloride; EPG5: ectopic P-granules 5 autophagy tethering factor; GBM: glioblastoma multiforme; GFP: green fluorescent protein; LAMP2: lysosomal associated membrane protein 2; LIRs: LC3-interacting regions; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NC: negative control; RFP: red fluorescent protein; RT: radiotherapy; SDC1: syndecan 1; SNAP29: synaptosome associated protein 29; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TGM2: transglutaminase 2; TMT: tandem mass tag; VAMP8: vesicle associated membrane protein 8; WT: wild type.


Assuntos
Autofagossomos , Glioblastoma , Camundongos , Animais , Autofagossomos/metabolismo , Autofagia , Glioblastoma/metabolismo , Cistamina/metabolismo , Proteômica , Lisossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Tolerância a Radiação , Fusão de Membrana , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte Vesicular/metabolismo
10.
Cell Death Differ ; 30(1): 137-151, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995846

RESUMO

Radioresistance is a principal culprit for the failure of radiotherapy in hepatocellular carcinoma (HCC). Insights on the regulation genes of radioresistance and underlying mechanisms in HCC are awaiting for profound investigation. In this study, the suppressor of cytokine signaling 2 (SOCS2) were screened out by RNA-seq and bioinformatics analyses as a potential prognosis predictor of HCC radiotherapy and then were determined to promote radiosensitivity in HCC both in vivo or in vitro. Meanwhile, the measurements of ferroptosis negative regulatory proteins of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), intracellular lipid peroxidation and Fe2+ concentration suggested that a high level of ferroptosis contributed to the radiosensitization of HCC. Moreover, SOCS2 and SLC7A11 were expressed oppositely in HCC clinical tissues and tumour xenografts with different radiosensitivities. Mechanistically, the N-terminal domain of SLC7A11 was specifically recognized by the SH2-structural domain of SOCS2. While the L162 and C166 of SOCS2-BOX region could bind elongin B/C compound to co-form a SOCS2/elongin B/C complex to recruit ubiquitin molecules. Herein, SOCS2 served as a bridge to transfer the attached ubiquitin to SLC7A11 and promoted K48-linked polyubiquitination degradation of SLC7A11, which ultimately led to the onset of ferroptosis and radiosensitization of HCC. In conclusion, it was demonstrated for the first time that high-expressed SOCS2 was one of the biomarkers predicting radiosensitivity of HCC by advancing the ubiquitination degradation of SLC7A11 and promoting ferroptosis, which indicates that targeting SOCS2 may enhance the efficiency of HCC radiotherapy and improve the prognosis of patients.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Elonguina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo
11.
Br J Cancer ; 127(10): 1760-1772, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36050447

RESUMO

BACKGROUND: Hypoxia-mediated radioresistance is a major reason for the adverse radiotherapy outcome of non-small cell lung cancer (NSCLC) in clinical, but the underlying molecular mechanisms are still obscure. METHODS: Cellular and exosomal ANGPTL4 proteins under different oxygen status were examined. Colony survival, lipid peroxidation and hallmark proteins were employed to determine the correlation between ferroptosis and radioresistance. Gene regulations, western blot and xenograft models were used to explore the underlying mechanisms of the role of ANGPTL4 in radioresistance. RESULTS: ANGPTL4 had a much higher level in hypoxic NSCLC cells compared to normoxic cells. Up- or down- regulation of ANGPTL4 positively interrelated to the radioresistance of NSCLC cells and xenograft tumours. GPX4-elicited ferroptosis suppression and lipid peroxidation decrease were authenticated to be involved in the hypoxia-induced radioresistance. ANGPTL4 encapsulated in the exosomes from hypoxic cells was absorbed by neighbouring normoxic cells, resulting in radioresistance of these bystander cells in a GPX4-dependent manner, which was diminished when ANGPTL4 was downregulated in the donor exosomes. CONCLUSION: Hypoxia-induced ANGPTL4 rendered radioresistance of NSCLC through at least two parallel pathways of intracellular ANGPTL4 and exosomal ANGPTL4, suggesting that ANGPTL4 might applicable as a therapeutic target to improve the therapeutic efficacy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Angiopoietinas , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Ferroptose/genética , Hipóxia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo
12.
Chem Commun (Camb) ; 58(69): 9686-9689, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35959638

RESUMO

Catalytic enantioselective sulfenylation to construct diheteroatom-bearing carbon centres was achieved by employing chiral guanidine organocatalysts. This protocol provided a facile route towards the synthesis of α-fluoro-α-sulfenyl-ß-ketoamides, azlactone adducts and α-sulfur-substituted amino acid derivatives in high yields with good to excellent enantioselectivities. A possible working mode was proposed to elucidate the chiral control of the process.


Assuntos
Carbono , Carbono/química , Catálise , Estereoisomerismo
13.
iScience ; 25(8): 104690, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35847556

RESUMO

Radiotherapy combined with immune checkpoint blockade has gradually revealed the superiority in the antitumor therapy; however, the contribution of host PD-L1 remains elusive. In this study, we found that the activation of CD8+ T cells was strikingly increased in both irradiated PD-L1-expressing primary tumor and distant non-irradiated syngeneic tumor in PD-L1-deficient mouse host, and thus enhanced radiation-induced antitumor abscopal effect (ATAE) by activating cGAS-STING pathway. Notably, the autophagy inhibitors distinctively promoted dsDNA aggregation in the cytoplasm and increased the release of cGAS-STING-regulated IFN-ß from irradiated cells, which further activated bystander CD8+ T cells to release IFN-γ and contributed to ATAE. These findings revealed a signaling cascade loop that the cytokines released from irradiated tumor recruit CD8+ T cells that in turn act on the tumor cells with amplified immune responses in PD-L1-deficient host, indicating a potential sandwich therapy strategy of RT combined with PD-L1 blockage and autophagy inhibition.

14.
Front Nutr ; 9: 903218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662931

RESUMO

Kadsura coccinea fruit, a novel fruit resource, has attracted wide interest, but the physicochemical characteristics and biological activities of its polysaccharides remain unclear. This study investigated the physicochemical properties of a polysaccharide extracted from K. coccinea fruit polysaccharide (KCFP) and evaluated its antioxidant and hypolipidaemic activities in vitro and in vivo. KCFP is an amorphous, thermally stable pectin heteropolysaccharide with an average molecular weight of 204.6 kDa that is mainly composed of mannose, rhamnose, glucose, galactose, xylose, arabinose, galacturonic acid (molar percentage >70%) and glucuronic acid. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging assays and an iron reducing antioxidant power assay showed that KCFP has strong antioxidant capacity, while the bile acid binding assay showed that KCFP has hypolipidaemic potential in vitro. The antioxidant and hypolipidaemic activities of KCFP were further evaluated in high-fat diet-induced hyperlipidaemic mice. KCFP significantly increased the activities of superoxide dismutase, glutathione peroxidase and catalase, decreased the malondialdehyde content, significantly reduced the total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels, and increased the amount of high-density lipoprotein cholesterol (HDL-C). These findings suggest that KCFP could be used as a functional food to remedy oxidative damage and hyperlipidaemia.

15.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638754

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Radiotherapy has long been an important treatment method of GBM. However, the intrinsic radioresistance of GBM cells is a key reason of poor therapeutic efficiency. Recently, many studies have shown that using the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) in radiotherapy may improve the prognosis of GBM patients, but the underlying molecular mechanisms remain unclear. In this study, Gene Expression Omnibus (GEO) datasets GSE153982 and GSE131956 were analyzed to evaluate radiation-induced changes of gene expression in GBM without or with SAHA treatment, respectively. Additionally, the survival-associated genes of GBM patients were screened using the Chinese Glioma Genome Atlas (CGGA) database. Taking the intersection of these three datasets, 11 survival-associated genes were discovered to be activated by irradiation and regulated by SAHA. The expressions of these genes were further verified in human GBM cell lines U251, T98G, and U251 homologous radioresistant cells (U251R) by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). It was found that MMP14 mRNA was considerably highly expressed in the radioresistant cell lines and was reduced by SAHA treatment. Transfection of MMP14 siRNA (siMMP14) suppressed cell survivals of these GBM cells after irradiation. Taken together, our results reveal for the first time that the MMP14 gene contributed to SAHA-induced radiosensitization of GBM.


Assuntos
Quimiorradioterapia , Bases de Dados de Ácidos Nucleicos , Glioblastoma , Inibidores de Histona Desacetilases/farmacologia , Metaloproteinase 14 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Vorinostat/farmacologia , Linhagem Celular Tumoral , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Metaloproteinase 14 da Matriz/genética , Proteínas de Neoplasias/genética , Vorinostat/farmacocinética
16.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576128

RESUMO

Radiation-induced abscopal effect (RIAE) outside of radiation field is becoming more attractive. However, the underlying mechanisms are still obscure. This work investigated the deleterious effect of thoracic irradiation (Th-IR) on distant bone marrow and associated signaling factors by irradiating the right thorax of mice with fractionated doses (8 Gy × 3). It was found that this localized Th-IR increased apoptosis of bone marrow cells and micronucleus formation of bone marrow polychromatic erythrocytes after irradiation. Tandem mass tagging (TMT) analysis and ELISA assay showed that the concentrations of TNF-α and serum amyloid A (SAA) in the mice were significantly increased after Th-IR. An immunohistochemistry assay revealed a robust increase in SAA expression in the liver rather than in the lungs after Th-IR. In vitro experiments demonstrated that TNF-α induced SAA expression in mouse hepatoma Hepa1-6 cells, and these two signaling factors induced DNA damage in bone marrow mesenchymal stem cells (BMSCs) by increasing reactive oxygen species (ROS). On the other hand, injection with TNF-α inhibitor before Th-IR reduced the secretion of SAA and attenuated the abscopal damage in bone marrow. ROS scavenger NAC could also mitigated Th-IR/SAA-induced bone marrow damage in mice. Our findings indicated that Th-IR triggered TNF-α release from lung, which further promoted SAA secretion from liver in a manner of cascade reaction. Consequently, these signaling factors resulted in induction of abscopal damage on bone marrow of mice.


Assuntos
Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos da radiação , Fracionamento da Dose de Radiação , Proteína Amiloide A Sérica/metabolismo , Tórax/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo , Acetilcisteína/farmacologia , Animais , Proteínas Sanguíneas/metabolismo , Ciclo Celular/efeitos da radiação , Dano ao DNA , Sequestradores de Radicais Livres/farmacologia , Lesão Pulmonar/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos Endogâmicos C57BL , Proteômica , Espécies Reativas de Oxigênio/metabolismo
17.
Cancer Lett ; 518: 127-139, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271102

RESUMO

Radiotherapy is a standard and conventional treatment strategy for nasopharyngeal carcinoma (NPC); however, radioresistance remains refractory to clinical outcomes. Understanding the molecular mechanism of radioresistance is crucial for advancing the efficacy of radiotherapy and improving the prognosis of NPC. In this study, ß-lactamase-like-protein 2 (LACTB2) was identified as a potential biomarker for radioresistance using tandem mass tag proteomic analysis of NPC cells, gene chip analysis of NPC tissues, and differential gene analysis between NPC and normal nasopharyngeal tissues from the Gene Expression Omnibus database GSE68799. Meanwhile, LACTB2 levels were elevated in the serum of patients with NPC after radiotherapy. Inhibiting LACTB2 levels and mitophagy can sensitize NPC cells to ionizing radiation. In NPC cells, LACTB2 was augmented at the transcription and protein levels after radiation rather than nucleus-cytoplasm-mitochondria transposition to activate PTEN-induced kinase 1 (PINK1) and mitophagy. In addition, LACTB2 was first authenticated to co-locate with PINK1 by interacting with its N-terminal domain. Together, our findings indicate that overexpressed LACTB2 provoked PINK1-dependent mitophagy to promote radioresistance and thus might serve as a prognostic biomarker for NPC radiotherapy.


Assuntos
Mitofagia/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , beta-Lactamases/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Citoplasma/genética , Expressão Gênica/genética , Humanos , Mitocôndrias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteômica/métodos , Radiação Ionizante
18.
Theranostics ; 11(12): 5742-5758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897879

RESUMO

Rationale: Radiotherapy has become a mainstay for tumor management, and more than 50% of patients with thoracic tumor need to be treated with radiotherapy. However, the potential adverse effects of thoracic radiotherapy on the reproductive system remain elusive. Methods: Western blot analysis, immunofluorescence assay and transmission electron microscopy (TEM) analysis were performed to investigate the integrity of blood-testis barrier (BTB) in male mice after hypofractionated irradiation (IR) on the right thorax. RNA sequencing, co-immunoprecipitation (IP), Duolink PLA and inhibitor experiments were carried out to demonstrate the molecular mechanisms of the BTB dynamics changes and the subsequent reproductive effect. Results: It was found that the hypofractionated IR on right thorax evoked ultrastructural destruction in distant testes, and thus caused radiation-induced abscopal reproductive effect (RIARE) in male mice. Mechanistically, thoracic IR induced significant nuclear translocation of Rac Family Small GTPase 1 (Rac1) in abscopal Sertoli cells, which closely correlated with the activation of TNF-α/p38 mitogen activated protein kinase (MAPK) pathway. Of note, YWHAZ, a critical polarity protein, was found to be co-localized with Rac1 in Sertoli cells, and this interaction was indispensable for thoracic IR-induced Rac1 nuclear translocation and subsequent degradation of BTB-associated proteins. Conclusions: Our findings imply for the first time that YWHAZ-mediated Rac1 nuclear translocation plays central roles in RIARE, and TNF-α/p38 MAPK/Rac1 axis can be employed as a therapeutic target against RIARE for young male patients receiving hypofractionated radiotherapy.


Assuntos
Neuropeptídeos/metabolismo , Reprodução/efeitos da radiação , Células de Sertoli/metabolismo , Células de Sertoli/efeitos da radiação , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Barreira Hematotesticular/metabolismo , Barreira Hematotesticular/efeitos da radiação , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testículo/metabolismo , Testículo/efeitos da radiação
19.
Int J Biol Sci ; 17(4): 926-941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867819

RESUMO

Objectives: The roles of innate immunity including macrophages in radiation-induced abscopal effect (RIAE) are ambiguous. In this study, we evaluated the role of macrophage in RIAE and the interaction of cytokines in tumor microenvironment after irradiation. Materials and Methods: Transplanted tumor of breast cancer cells in BalB/C mice, severe combined immunodeficiency (SCID) mice and non-obese diabetic (NOD)-SCID mice were irradiated with fractionation doses to observe anti-tumor abscopal effect. The underlying mechanism of RIAE was investigated by treating the mice with TNF-α inhibitor or macrophage depletion drug and analyzing the alteration of macrophage distribution in tumors. A co-culture system of breast cancer cells and macrophages was applied to disclose the signaling factors and related pathways involved in the RIAE. Results: The growth of nonirradiated tumor was effectively suppressed in mice with normal or infused macrophages but not in mice with insufficiency/depletion of macrophage or TNF-α inhibition, where M1-macrophage was mainly involved. Investigation of the bystander signaling factors in vitro demonstrated that HMGB1 released from irradiated breast cancer cells promoted bystander macrophages to secret TNF-α through TLR-4 pathway and further inhibited the proliferation and migration of non-irradiated cancer cells by PI3K-p110γ suppression. Conclusions: HMGB1 and TNF-α contributes to M1-macrophages facilitated systemic anti-tumor abscopal response triggered by radiotherapy in breast cancer, indicating that the combination of immunotherapy and radiotherapy may has important implication in enhancing the efficiency of tumor treatment.


Assuntos
Neoplasias da Mama/radioterapia , Proteína HMGB1/metabolismo , Macrófagos/fisiologia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Transplante de Neoplasias , Receptor 4 Toll-Like/metabolismo , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
20.
Cancers (Basel) ; 13(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919192

RESUMO

Glioblastoma (GBM) is the most common type of primary tumor in central nervous system in adult with a 5-year survival rate of ≤5%. Despite of recent advances in tumor radiotherapy, the prognosis of GBM remains to be dismal due to radioresistance. In this study, we identified CD81 as a potential biomarker of GBM radioresistance with the analysis of upregulated genes in human glioma radioresistant cell lines U251R and T98G in comparison with U251 cells. In vitro and in vivo experiments demonstrated that suppressing CD81 by siRNA/shRNA enhanced radiation-induced cell killing and DNA damage of γ-H2AX formation, and delayed tumor xenograft growth of GBM. Mechanistically, we found that knockdown of CD81 significantly decreased radiation-induced expression of nuclear Rad51, a key protein involved in homologous recombination repair (HRR) of DNA, suggesting that CD81 is essential for DNA damage response. Meanwhile, when the cells were treated with B02, a Rad51 inhibitor, silencing CD81 would not sensitize GBM cells to radiation, which further illustrates that Rad51 acts as an effector protein of CD81 in tumor radioresistance. Dual immunofluorescence staining of CD81 and Rad51 illustrated that nuclear membrane CD81 contributed to the nuclear transport of Rad51 after irradiation. In conclusion, we demonstrated for the first time that CD81 not only played a vital role in DNA repair through regulating Rad51 nuclear transport, but also might serve as a potential target of GBM radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...